翻訳と辞書
Words near each other
・ Lambdina vitraria
・ Lambdoceras
・ Lambdoid suture
・ Lambdopsalis
・ Lambdotheriidae
・ Lambdotherium
・ Lambe
・ Lambe Alabakoski
・ Lambeau
・ Lambeau Field
・ Lambedor River
・ Lambeg
・ Lambeg drum
・ Lambeg railway station
・ Lambeg, County Antrim
Lambek–Moser theorem
・ Lambells Lagoon
・ Lambengolmor
・ Lambent
・ Lambent Material
・ Lambeoceras
・ Lambeosaurinae
・ Lambeosaurini
・ Lambeosaurus
・ Lamberg
・ Lamberhurst
・ Lamberhurst Quarter
・ Lambersart
・ Lambert
・ Lambert & Butler


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lambek–Moser theorem : ウィキペディア英語版
Lambek–Moser theorem
In combinatorial number theory, the Lambek–Moser theorem is a generalization of Beatty's theorem that defines a partition of the positive integers into two subsets from any monotonic integer-valued function. Conversely, any partition of the positive integers into two subsets may be defined from a monotonic function in this way.
The theorem was discovered by Leo Moser and Joachim Lambek. provides a visual proof of the result.〔For another proof, see 〕
==Statement of the theorem==
The theorem applies to any non-decreasing and unbounded function ''f'' that maps positive integers to non-negative integers. From any such function ''f'', define ''f''
* to be the integer-valued function that is as close as possible to the inverse function of ''f'', in the sense that, for all ''n'',
:''f''(''f''
*(''n'')) < ''n'' ≤ ''f''(''f''
*(''n'') + 1). It follows from this definition that ''f''
*
* = ''f''.
Further, define
:''F''(''n'') = ''f''(''n'') + ''n'' and ''G''(''n'') = ''f''
*(''n'') + ''n''.
Then the result states that ''F'' and ''G'' are strictly increasing and that the ranges of ''F'' and ''G'' form a partition of the positive integers.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lambek–Moser theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.